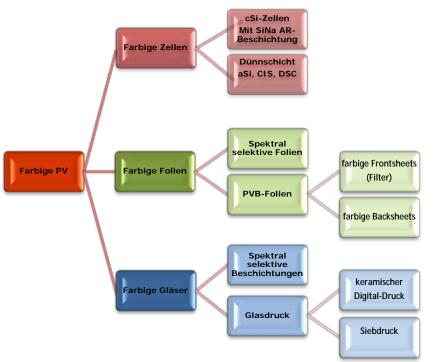
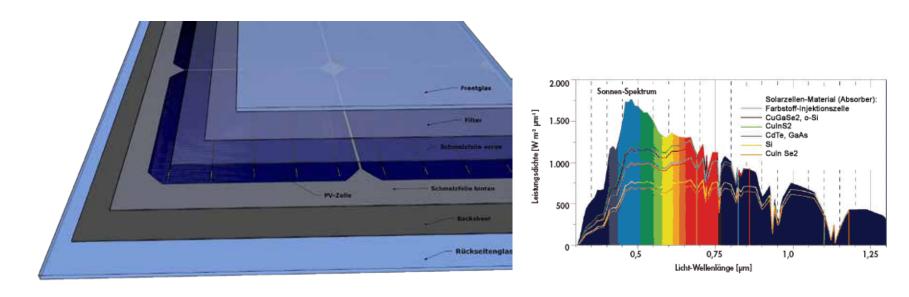


OTTI 9. Forum Bauwerksintegrierte Photovoltaik, 07.03.2017

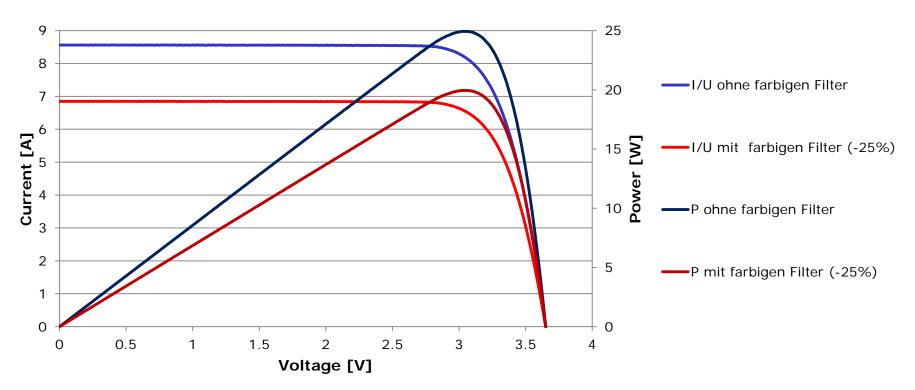

Farbige PV-Module Technologien, Typen und Anwendungen

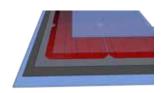
- 1. Einführung
- 2. Farbige kristalline Zellen
- 3. DSSC/Grätzel-Zellen
- 4. Farbige Folien
- 5. Spektral selektive Beschichtungen
- 6. Keramischer Digitaldruck auf Glas
- 7. Übersicht und Vergleich
- 8. Zusammenfassung

Werkhof CH-Mels, sundesign


Einführung- Wie wird Farbigkeit in PV Modulen realisiert?

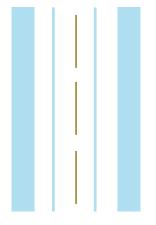
Kohlesilo CH-Basel, Solvatec AG


Einführung- Wie wird Farbigkeit in PV-Modulen realisiert?



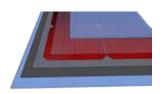
Schichtenaufbau

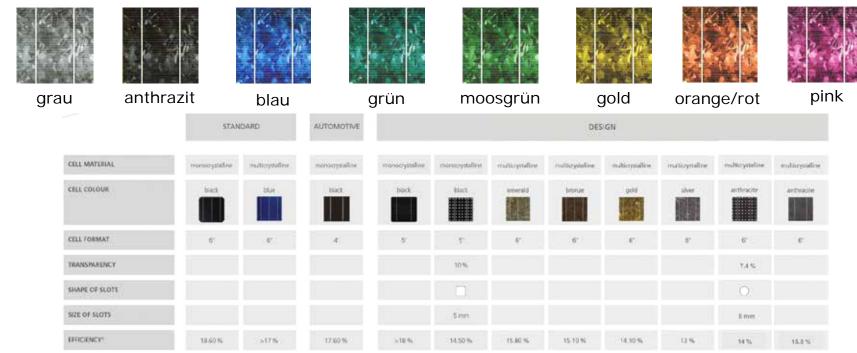
Sonnen-Spektrum

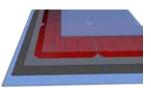

Einführung- Wie wirkt der farbige Filter elektrisch?

Farbige PV Zellen: kristalline Silizium-Zellen

- Glas
- Schmelzfolie
- Si₃N₄ ARC PV-Zelle
- Schmelzfolie
- Glas



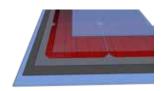

Prinzip Skizze


Schichtenaufbau

Farbspektrum Si₃N₄

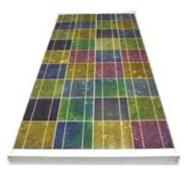
Farbige PV Zellen : Farben und Wirkungsgrade

Farbige PV Zellen : Beispiele cSi-Zellen

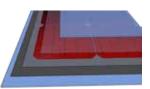

Paul-Horn Arena D-Tübingen, Suntechnics

Home+ Solar Decathlon Sunways

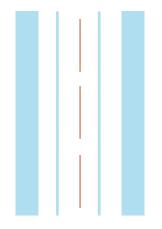
Werkhof Haselrain CH-Riehen, Suntechnics

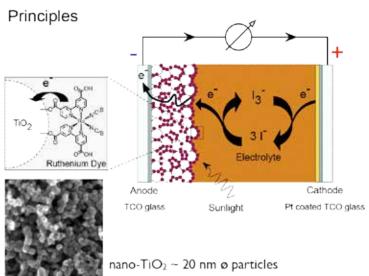

Farbige cSi-Zellen : Vor- und Nachteile

Vorteile:

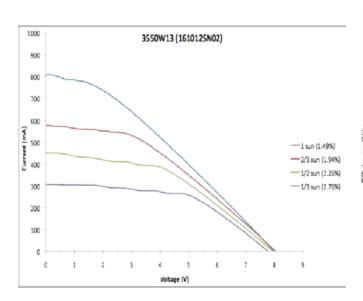

- Interessante Reflexion der Farben insbesondere bei polykristallinen Zellen.
- Der Modulaufbau ist analog zu Standardmodulen und ist in BIPV-Projekten bereits seit mehr als 15 Jahren im Einsatz.
- Auch als Standardmodule verfügbar.
- Im Vergleich zu anderen farbigen Technologien preiswert.

Nachteile:

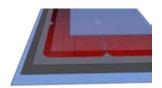

- Wenig verfügbare Zellfarben
- Kaum exakte Farbabstimmung mit gewünschten Farbton möglich.
- Abkleben der reflektierenden Busbars nicht sinnvoll.
- Wenig Anbieter von farbigen Zellen oder Modulen


Farbige PV Zellen: Farbstoff-Zellen (DSSC+Grätzelzellen)

- Glas
- Folie
- DSS Zelle
- Folie
- Glas



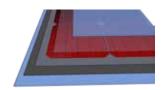

Prinzip Skizze


Schichtenaufbau

Funktionsweise

Farbstoffzellen: Wirkungsgrade

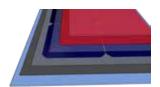
Farbstoffzellen : Beispiele



Swiss Convention Center CH-Lausanne, Solaronix

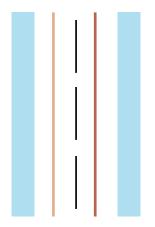
PV-Fenster GB-London, Caventou

Farbstoffzellen: Vor- und Nachteile


Vorteile:

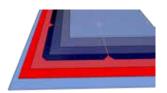
- Auch Teiltransparenz möglich.
- Geringer Primärenergieaufwand bei der Herstellung
- Keine seltenen Materialen erforderlich
- Relativ hohe Wirkungsgrade bei Schwachlicht.

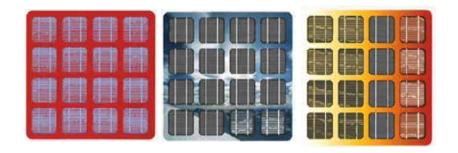
Nachteile:


- Zur Zeit wenig verfügbare Zellfarben
- Nur als Sonderanfertigung für BIPV-Projekte
- Zurzeit geringe Langzeitstabilität.
- Zurzeit geringer Wirkungsgrad im Industrie-Masstab

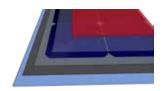
Farbige Folien

- Glas
- Streufilter
- Photovoltaik
- Schmelzfolie
- Hintergrundfolie
- Schmelzfolie
- Glas

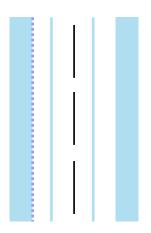

Schichtenaufbau



Anwendungen

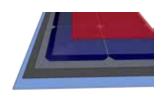

Hochschule Luzern Technik & Architektur

Farbige Folien: Hintergrundfolien Beispiele



Spektral selektive Beschichtung auf Glas

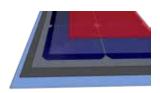
- Glas
- Beschichtung
- Schmelzfolie
- Photovoltaik
- Schmelzfolie
- Glas


Schichtenaufbau

Prinzip spektrale Selektion

Hochschule Luzern
Technik & Architektur

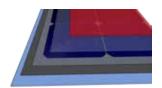
Spektral selektive Beschichtung auf Glas: Farbauswahl und Transmission



Gr	ey	Light-grey	Blue	Bluish-green	Green	Bronze	Gold	Terracotta
90 ±	1%	85 ± 1 %	88 ± 1 %	88 ± 1 %	87 ± 1 %	89 ± 1 %	86 ± 1 %	87 ± 1 %

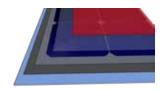
Resultierende Transmissionen mit 3.2mm Glas (Herstellerangaben)

Gemäss Hersteller zur Zeit bis zu 208 mögliche Farben.


Spektral selektive Beschichtung auf Glas: Beispiele

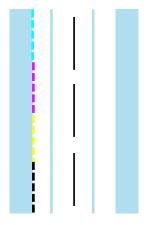
Kohlesilo CH-Basel, Solvatec AG

Spektral selektive Beschichtung auf Glas: Vor- und Nachteile


Vorteile:

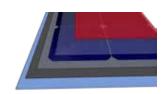
- Geringe Abschattungsverluste
- Geringe Sichtbarkeit der Zelle
- Als Standardmodule verfügbar

Nachteile:


- Zur Zeit max. 208 verfügbare Farben
- In der Feldmessung bei einigen Farben Abweichungen von Soll- zu Ist-Werten.

Mehrfarbiger Keramischer Digitaldruck auf Glas

- Glas
- Glas Druck
- Schmelzfolie
- Photovoltaik
- Schmelzfolie
- Glas

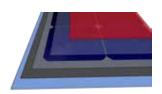


Prinzip Skizze

Schichtenaufbau

Drucker

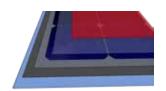
Mehrfarbiger Keramischer Digitaldruck auf Glas Beispiele



Demo-Box Energy Challenge, HSLU/Üserhuus

MFH Sees CH-Zürich, sundesign

Mehrfarbiger Keramischer Digitaldruck auf Glas Beispiele



MFH Hofwiesenstrasse CH-Zürich, Viriden+Partner

Solsmaragden NO-Oslo, Issol

Mehrfarbiger Keramischer Digitaldruck auf Glas Vor- und Nachteile

Vorteile:

- Hohe Flexibilität in Farbe, Intensitäten und Abmessungen.
- Je nach Druckintensität hohe resultierende Wirkungsgrade möglich.
- Individuelle Druckmotive möglich.
- In der Glasindustrie bewährte Methode.

Nachteile:

- Für Standardmodule wenig sinnvoll.
- Um die Zelle aus kurzer Entfernung vollständig zu verstecken, sind hohe Druckintensitäten mit verbunden Verlusten erforderlich.

Übersicht Technologien

	farbige	Zellen	farbige, transparente Beschichtungen				
Technologien	farbige Silizium- Zellen	Gräezel-Zellen	Glas-Siebdruck	Glasbeschichtung	Folie	Glas-Digital-Druck	
Effizienzverlust durch Farbe/Verschattung	15-40%	-	15-60%	3-8%*	20-45%	10-40%	
resultierende Moduleffizienz %	10-15%	2-8%	7-14%	15-16%	9-14%	10-15%	
(Referenz: 16.5%))							
zusätzlichen Kosten farbige Schicht EUR/m2	-	-	50-75	50-100	75-150	75-150	
Anzahl unterschiedlicher Farben 2017 stk.	ca. 10	ca. 5-10	∞	208	8 Standardfarben	_ ∞	
Individuelle Motive ja/nein	-	-	X	-	(X)	X	
Vorteile	auch als Standardmodul erhältlich	homogen teiltransparent	individuelle Farben und Motive möglich	sehr geringe Abschattungs- verluste	kaum Sichtbarkeit der Zelle. Helle Farben möglich.	individuelle Farben und Motive möglich	
Nachteile	keine extakte Farbbestimmung möglich	noch in der Prototypenphase	starke Abschattungs- Verluste bei intensiven Farben	für Einzelprojekte keine individuellen Farben erhältlich	zur Zeit wenig Farben erhältlich	für Standardmodule wenig geeignet	
Anbieter	Sunshine PV Corp. LOF Solar Corp.	Solaronix	Ertex ViaSolis Hero Solar	SwissInso/Cromatix	Solaxess	Üserhuus Issol Ertex	
Anmerkungen	optisch sehr lebendige kristalline Struktur	Langzeitstabilität noch fraglich.	sehr bekanntes Verfahren	Zelle kaum wahrnehmbar * Abweichende Feldmessungen	sehr hohe Farbsättigung	sehr flexible Projektierung und Fertigung.	

Zusammenfassung

- Hohe Wirkungsgrade von kristallinen Si-Zellen lassen Abschattung durch farbige Beschichtungen zu.
- Die individuellen Projektanforderungen bestimmen die gewählte Technologie.
- Die Farbe und Intensität definiert den Wirkungsgrad.
- Digitaler Druck mit dem grössten Potential für individuelle Gestaltung.

Vielen Dank

Lucerne School of Engineering and Architecture
Competence Center Envelopes and Solar Energy (CC EASE)

Dipl.-Ing. Christian Roeske Head of Research Group AIPV

www.hslu.ch/ccease

T direct +41 41 349 36 48 christian.roeske@hslu.ch

Ebenaustrasse 20 (P.O. Technikumstrasse 21) CH 6048 Horw T +41 41 349 3311 F +41 41 349 39 60

Acknowledgement:

This research was supported by the Swiss National Science Foundation SNF as part of the project ACTIVE INTERFACES - Holistic strategy to simplify standards, assessments and certifications for building integrated photovoltaics (#153849).